LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanistic Aspects of Wet and Dry CO Oxidation on Co3O4 Nanorod Surfaces: A NAP-UPS Study

Photo from wikipedia

Catalytic activity, electronic structure, and the mechanistic aspects of Co3O4 nanorod (NR) surfaces have been explored for CO oxidation in dry and wet atmosphere using near-ambient pressure ultraviolet photoelectron spectroscopy.… Click to show full abstract

Catalytic activity, electronic structure, and the mechanistic aspects of Co3O4 nanorod (NR) surfaces have been explored for CO oxidation in dry and wet atmosphere using near-ambient pressure ultraviolet photoelectron spectroscopy. Presence of water with CO + O2 plummets the catalytic activity because of the change in the electronic nature from predominantly oxide (without water in feed) to a Co3O4 surface covered by a few intermediates. However, at ≥375 K, the Co3O4 surface recovers and regains the oxidation activity, at least partially, even in the presence of water. This is fully supported by the changes observed in the work function of Co3O4 under wet (H2O + CO + O2) conditions compared with dry (CO + O2) conditions. This study focuses on the comparative CO oxidation rate on Co3O4 NR surfaces and highlights the changes in the electronic structure that occur in the catalyst during the CO oxidation reaction.

Keywords: oxidation; nanorod surfaces; co3o4 nanorod; aspects wet; mechanistic aspects; co3o4

Journal Title: ACS Omega
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.