LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanoscale Mapping of Bromide Segregation on the Cross Sections of Complex Hybrid Perovskite Photovoltaic Films Using Secondary Electron Hyperspectral Imaging in a Scanning Electron Microscope

Photo from wikipedia

Mixed halide (I/Br) complex organic/inorganic hybrid perovskite materials have attracted much attention recently because of their excellent photovoltaic properties. Although it has been proposed that their stability is linked to… Click to show full abstract

Mixed halide (I/Br) complex organic/inorganic hybrid perovskite materials have attracted much attention recently because of their excellent photovoltaic properties. Although it has been proposed that their stability is linked to the chemical inhomogeneity of I/Br, no direct proof has been offered to date. Here, we report a new method, secondary electron hyperspectral imaging (SEHI), which allows direct imaging of the local variation in Br concentration in mixed halide (I/Br) organic/inorganic hybrid perovskites on a nanometric scale. We confirm the presence of a nonuniform Br distribution with variation in concentration within the grain interiors and boundaries and demonstrate how SEHI in conjunction with low-voltage scanning electron microscopy can enhance the understanding of the fundamental physics and materials science of organic/inorganic hybrid photovoltaics, illustrating its potential for research and development in “real-world” applications.

Keywords: electron hyperspectral; hyperspectral imaging; secondary electron; scanning electron; hybrid perovskite; electron

Journal Title: ACS Omega
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.