LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of Core–Shell-Structured Organic–Inorganic Hybrid Nanocatalyst for the Expedient Synthesis of Polysubstituted Oxazoles via Tandem Oxidative Cyclization Pathway

Photo from wikipedia

The quest for designing efficient heterogeneous catalytic systems for tandem oxidative cyclization reactions has provided a great impetus to research efforts, as it enables the step-economic construction of complex heterocyclic… Click to show full abstract

The quest for designing efficient heterogeneous catalytic systems for tandem oxidative cyclization reactions has provided a great impetus to research efforts, as it enables the step-economic construction of complex heterocyclic molecules as well as confers the benefits of a facile catalytic recovery. In the present study, we disclose a new core–shell-structured organic–inorganic hybrid copper nanocatalyst fabricated via the covalent grafting of 2,2′-dipyridyl ketone ligand on amine-functionalized silica-encapsulated magnetite nanoparticles, followed by its metallation with cupric acetate for the tandem oxidative cyclization of amines and β-ketoesters, leading to the production of biologically active polysubstituted oxazole moieties. This programmed catalytic protocol proceeds via the formation of intermolecular C–C and C–N bonds by single-step synthesis and accommodates a broad combination of reaction coupling partners.

Keywords: shell structured; tandem oxidative; core shell; structured organic; oxidative cyclization

Journal Title: ACS Omega
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.