LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hierarchical Design of CuS Architectures for Visible Light Photocatalysis of 4-Chlorophenol

Photo from academic.microsoft.com

Hydrothermal-assisted CuS hierarchical architectures were grown in the presence of anionic sulfur sources, and the investigation of their degradation efficiency for a pesticide 4-chlorophenol (4-CP) under visible light irradiation was… Click to show full abstract

Hydrothermal-assisted CuS hierarchical architectures were grown in the presence of anionic sulfur sources, and the investigation of their degradation efficiency for a pesticide 4-chlorophenol (4-CP) under visible light irradiation was carried out. The dissociation of S2– from the sulfur compound governs the nucleation of CuS followed by a specific pattern of growth to produce different morphologies. The self-assembled covellite spherical CuS flower architecture assembles in the presence of thiourea and exhibits the highest photodegradation activity. The open architecture of ∼2.3 μm spherical CuS flowers consisting of a ∼100 nm thick sheet encompasses a comparatively high surface area and particle growth along the (110) plane that facilitates more active sites for catalytic activity enhancement. The catalyst loading for 4-CP degradation has been optimized, and a detailed trapping mechanism has been explored.

Keywords: cus; design cus; visible light; hierarchical design; cus architectures; chlorophenol

Journal Title: ACS Omega
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.