Biofortification of crops to enhance provitamin A carotenoids is a strategy to increase the intake where vitamin A deficiency presents a widespread problem. Heat, light, and oxygen cause isomerization and… Click to show full abstract
Biofortification of crops to enhance provitamin A carotenoids is a strategy to increase the intake where vitamin A deficiency presents a widespread problem. Heat, light, and oxygen cause isomerization and oxidation of carotenoids, reducing provitamin A activity. Understanding provitamin A retention is important for assessing efficacy of biofortified foods. Retention of carotenoids in high-xanthophyll and high-β-carotene maize was assessed after a long-term storage at three temperatures. Carotenoid retention in high-β-cryptoxanthin maize was determined in muffins, non-nixtamalized tortillas, porridge, and fried puffs made from whole-grain and sifted flour. Retention in eggs from hens fed high-β-cryptoxanthin maize was assessed after frying, scrambling, boiling, and microwaving. Loss during storage in maize was accelerated with increasing temperature and affected by genotype. Boiling whole-grain maize into porridge resulted in the highest retention of all cooking and sifting methods (112%). Deep-fried maize and scrambled eggs had the lowest carotenoid retention rates of 67–78 and 84–86%, respectively.
               
Click one of the above tabs to view related content.