LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Small Alcohols Revisited: CCSD(T) Relative Potential Energies for the Minima, First- and Second-Order Saddle Points, and Torsion-Coupled Surfaces

Photo by djuls from unsplash

The elucidation of conformations and relative potential energies (rPEs) of small molecules has a long history across a diverse range of fields. Periodically, it is helpful to revisit what conformations… Click to show full abstract

The elucidation of conformations and relative potential energies (rPEs) of small molecules has a long history across a diverse range of fields. Periodically, it is helpful to revisit what conformations have been investigated and to provide a consistent theoretical framework for which clear comparisons can be made. In this paper, we compute the minima, first- and second-order saddle points, and torsion-coupled surfaces for methanol, ethanol, propan-2-ol, and propanol using consistent high-level MP2 and CCSD(T) methods. While for certain molecules more rigorous methods were employed, the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pV5Z theory level was used throughout to provide relative energies of all minima and first-order saddle points. The rPE surfaces were uniformly computed at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level. To the best of our knowledge, this represents the most extensive study for alcohols of this kind, revealing some new aspects. Especially for propanol, we report several new conformations that were previously not investigated. Moreover, two metrics are included in our analysis that quantify how the selected surfaces are similar to one another and hence improve our understanding of the relationship between these alcohols.

Keywords: order saddle; minima first; saddle points; relative potential

Journal Title: ACS Omega
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.