Light emission from the color centers in diamonds can be significantly enhanced by their interaction with optical microcavities. In the conventional chip-based hybrid approach, nanodiamonds are placed directly on the… Click to show full abstract
Light emission from the color centers in diamonds can be significantly enhanced by their interaction with optical microcavities. In the conventional chip-based hybrid approach, nanodiamonds are placed directly on the surface of microcavity chips created using fabrication-matured material platforms. However, the achievable enhancement due to the Purcell effect is limited because of the evanescent interaction between the electrical field of the cavity and the nanodiamond. Here, we propose and statistically analyze a diamond in a nanopocket structure as a new route to achieve a high enhancement of light emission from the color center in the nanodiamond, placed in an optical microcavity. We demonstrate that by creating a nanopocket within the photonic crystal L3 cavity and placing the nanodiamond in, a significant and a robust control over the local density of states can be obtained. The antinodes of the electric field relocate to the nanosized air gaps within the nanopocket, between the nanodiamond and the microcavity. This creates an elevated and uniform electric field across the nanodiamond that is less sensitive to perturbations in the shape and orientation of the nanodiamond. Using a silicon nitride photonic crystal L3 cavity and aiming at silicon-vacancy and nitrogen-vacancy color centers in diamond, we performed a statistical analysis of light emission, assuming random positions of color centers and dipole moment orientations. We showed that in cavities with experimentally feasible quality factors, the diamond in the nanopocket structure produces Purcell factor distributions with mean and median that are tenfold larger compared to what can be achieved when the diamond is on the surface of the microcavity.
               
Click one of the above tabs to view related content.