LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of Low-ppm CO Sensors Using Pristine CeO2 Nanospheres with High Surface Area

Photo from wikipedia

Mesoporous CeO2 nanospheres with appreciably high surface area are prepared using reversed micelles by a water-in-oil microemulsion method. The structural morphology and semiconducting properties of the nanoparticles are thoroughly investigated… Click to show full abstract

Mesoporous CeO2 nanospheres with appreciably high surface area are prepared using reversed micelles by a water-in-oil microemulsion method. The structural morphology and semiconducting properties of the nanoparticles are thoroughly investigated using X-ray diffraction, field effect scanning electron microscopy, transmission electron microscopy, and UV–visible spectroscopic techniques. Even after high-temperature calcination, the morphological retention of the material is apparent by electron microscopy. The deployment of undoped CeO2 nanospheres for the detection of low-ppm CO yields superior performances in terms of sensitivity, response–recovery times, and selectivity compared to those of other sensors of the same genre. These CO sensors exhibit ∼ 52% sensitivity with a response time of only 13 s. The sensor parameters are analyzed as a function of both temperature and gas concentration. In addition to that on the cost-effective and scalable synthesis of CeO2 nanospheres, this article also reports on the fabrication of packaged CO sensors, which can be potentially utilized for industrial and environmental monitoring purposes.

Keywords: low ppm; surface area; microscopy; high surface; ceo2 nanospheres

Journal Title: ACS Omega
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.