LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Understanding Electrocatalytic Hydrodechlorination of Chlorophenols on Palladium-Modified Cathode in Aqueous Solution

This work aimed at investigating electrocatalytic hydrodechlorination (ECH) mechanisms of chlorophenols (CPs) on a Pd-modified cathode. Experiments on the ECH of 2,4-dichlorophenol were conducted under extreme test conditions, i.e., with… Click to show full abstract

This work aimed at investigating electrocatalytic hydrodechlorination (ECH) mechanisms of chlorophenols (CPs) on a Pd-modified cathode. Experiments on the ECH of 2,4-dichlorophenol were conducted under extreme test conditions, i.e., with various buffer solutions and several sodium salt solutions as supporting electrolytes. Buffer solutions promote dechlorination due to their property of retarding the alkalinity of a solution. ECH was found to be significantly inhibited by sulfite. Experimental results showed that sulfite poisoning on Pd catalysts was reversible. Protonation may account, at least in part, for the observed high pH dependency of ECH, which proceeded rapidly, with lower apparent activation energy (Ea) in the acidic electrolyte. In addition, pH influenced the selectivity of dechlorination of CPs. It was inferred that the ECH of CPs on the Pd-modified electrode was a preactivated electrocatalytic reaction.

Keywords: understanding electrocatalytic; solution; modified cathode; electrocatalytic hydrodechlorination

Journal Title: ACS Omega
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.