The catalytic performance of metal particles is closely related to the particle size. In this article, ultrafine palladium nanoparticles anchored on nitrogen-doping carbon support (Pd/N-XC72R) were fabricated, wherein the N-XC72R… Click to show full abstract
The catalytic performance of metal particles is closely related to the particle size. In this article, ultrafine palladium nanoparticles anchored on nitrogen-doping carbon support (Pd/N-XC72R) were fabricated, wherein the N-XC72R was prepared through low-temperature annealing of Vulcan XC72R carbon with urea at 300 °C. Nitrogen dopant on the surface of carbon support can remarkably strengthen the affinity of the metal nanoparticles onto the support. Compared with the Vulcan XC-72R-supported Pd catalyst, the prepared Pd/N-XC72R delivered superior catalytic activity for the transfer hydrogenation of nitroarenes with formic acid as the hydrogen donor at ambient temperature. Our strategy may provide an effective and feasible approach to fabricate N-functionalized carbon materials and construct high-performance ultrasmall metal nanoparticle heterogeneous catalysts.
               
Click one of the above tabs to view related content.