LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Programming ORR Activity of Ni/NiOx@Pd Electrocatalysts via Controlling Depth of Surface-Decorated Atomic Pt Clusters

Photo from wikipedia

Carbon nanotube supported ternary metallic nanocatalysts (NCs) comprising Nicore–Pdshell structure and Pt atomic scale clusters in shell (namely, Ni@Pd/Pt) are synthesized by using wet chemical reduction method with reaction time… Click to show full abstract

Carbon nanotube supported ternary metallic nanocatalysts (NCs) comprising Nicore–Pdshell structure and Pt atomic scale clusters in shell (namely, Ni@Pd/Pt) are synthesized by using wet chemical reduction method with reaction time control. Effects of Pt4+ adsorption time and Pt/Pd composition ratios on atomic structure with respect to electrochemical performances of experimental NCs are systematically investigated. By cross-referencing results of high-resolution transmission electron microscopy, X-ray diffraction, X-ray absorption, density functional theoretical calculations, and electrochemical analysis, we demonstrate that oxygen reduction reaction (ORR) activity is dominated by depth and distribution of Pt clusters in a Ni@Pd/Pt NC. For the optimum case (Pt4+ adsorption time = 2 h), specific activity of Ni@Pd/Pt is 0.732 mA cm–2 in ORR. Such a value is 2.8-fold higher as compared to that of commercial J.M.-Pt/C at 0.85 V (vs reversible hydrogen electrode). Such improvement is attributed to the protection of defect sites from oxide reaction in the presence of Pt clusters in NC surface. When adsorption time is 10 s, Pt clusters tends to adsorb in the Ni@Pd surface. A substantially increased galvanic replacement between Pt4+ ion and Pd/Ni metal is found to result in the formation of Ni@Pd shell with Pt cluster in the interface when adsorption time is 24 h. Both structures increase the surface defect density and delocalize charge density around Pt clusters, thereby suppressing the ORR activity of Ni@Pd/Pt NCs.

Keywords: orr activity; surface; activity; adsorption time

Journal Title: ACS Omega
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.