LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Key Role of the Local Hydrophobicity in the East Patch of Plastocyanins on Their Thermal Stability and Redox Properties

Photo from wikipedia

Understanding the molecular basis of the thermal stability and functionality of redox proteins has important practical applications. Here, we show a distinct thermal dependence of the spectroscopic and electrochemical properties… Click to show full abstract

Understanding the molecular basis of the thermal stability and functionality of redox proteins has important practical applications. Here, we show a distinct thermal dependence of the spectroscopic and electrochemical properties of two plastocyanins from the thermophilic cyanobacterium Phormidium laminosum and their mesophilic counterpart from Synechocystis sp. PCC 6803, despite the similarity of their molecular structures. To explore the origin of these differences, we have mimicked the local hydrophobicity in the east patch of the thermophilic protein by replacing a valine of the mesophilic plastocyanin by isoleucine. Interestingly, the resulting mutant approaches the thermal stability, redox thermodynamics, and dynamic coupling of the flexible site motions of the thermophilic protein, indicating the existence of a close connection between the hydrophobic packing of the east patch region of plastocyanin and the functional control and stability of the oxidized and reduced forms of the protein.

Keywords: hydrophobicity east; east patch; stability; local hydrophobicity; thermal stability

Journal Title: ACS Omega
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.