LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular Insights into Destabilization of Alzheimer’s Aβ Protofibril by Arginine Containing Short Peptides: A Molecular Modeling Approach

Photo from wikipedia

Aggregation of amyloid beta (Aβ) peptides leads to formation of fibrilar, soluble oligomers, and their deposition is a key event in progression of Alzheimer’s disease (AD). Recent experimental studies of… Click to show full abstract

Aggregation of amyloid beta (Aβ) peptides leads to formation of fibrilar, soluble oligomers, and their deposition is a key event in progression of Alzheimer’s disease (AD). Recent experimental studies of Arg-Arg-7-amino-4-trifluoromethylcoumarin (RR-AFC) showed significant Aβ aggregation inhibition, but its molecular mechanism is not yet clear. Hence, the present study aims at exploring the underlying mechanism of destabilization and inhibition of aggregation of the Aβ protofibril by RR-AFC at the molecular level. Molecular docking analysis shows that RR-AFC binds to chain A of the Aβ protofibril through hydrogen bonding interactions. Comparative molecular dynamics simulations depict the binding of RR-AFC at the edge of chain A, and its partially inserted conformation at the hydrophobic core destabilizes the Aβ protofibril. Its binding causes loss of hydrophobic contacts, leading to a partial opening of tightly packed β-sheet protofibrils. The hydration effect of salt bridge between the amino group of Lys...

Keywords: alzheimer protofibril; destabilization alzheimer; molecular insights; protofibril; destabilization; insights destabilization

Journal Title: ACS Omega
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.