Combinatorially synthesized materials, especially cationic polymers (CPs), with gene transfection function hold great promise in nanotechnology. However, the main limitations of the existing CPs [such as polyethylenimine (PEI), poly-l-arginine, or… Click to show full abstract
Combinatorially synthesized materials, especially cationic polymers (CPs), with gene transfection function hold great promise in nanotechnology. However, the main limitations of the existing CPs [such as polyethylenimine (PEI), poly-l-arginine, or polyamidoamine-based dendrimers] as gene transfection agents are high cytotoxicity in the physiological environment. We have developed novel CPs composed of polyamines—endogeneous tetraamine spermine (Spm) and synthetically made triamine N-(2-aminoethyl)-1,3-propanediamine (Apd) for incorporating sec-amino groups and imparting PEI-like structure to the CP backbones. Naturally occurring building blocks such as amino acid arginine (R) was also used for incorporating guanidine-groups into the CPs. The cytotoxicity of resulting CPs—polyureas (PUs) and polyamides such as polysuccinamides and R-attached polymalamides was evaluated using murine and human fibroblasts and carcinoma cell lines. The cell compatibility screening revealed that the CPs made of Apd are less cy...
               
Click one of the above tabs to view related content.