LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biomimetic Polyimide-Supported Cuprous Oxide Photocatalytic Film with Tunable Hydrophobicity, Improved Thermal Stability, and Photocatalytic Activity toward CO2 Reduction

Photo by seemurray from unsplash

Flexible and thermally stable polyimide (PI) films containing a hierarchical surface structure were synthesized as substrates to support visible-light active cuprous oxide for photocatalytic reduction of carbon dioxide for the… Click to show full abstract

Flexible and thermally stable polyimide (PI) films containing a hierarchical surface structure were synthesized as substrates to support visible-light active cuprous oxide for photocatalytic reduction of carbon dioxide for the first time. With the nanocasting technique, the surface structure on the leaves of Xanthosoma sagittifolium was successfully duplicated on PI films. Followed by the ion-exchange process and adequate thermal treatment, cuprous oxide nanoparticles were successfully immobilized on the artificial PI leaves and exhibited the capability to photoreduce carbon dioxide into carbon monoxide under visible-light illumination. With the selection of biomimetic structures and adjustment of fabrication parameters, the hydrophobicity and optical absorption edge of the photocatalytic film were tunable. An increase in hydrophobicity improved the yield of carbon monoxide. The introduction of a hierarchical structure on the surface and cuprous oxide within the matrix dramatically enhanced the thermal st...

Keywords: polyimide; photocatalytic film; oxide photocatalytic; cuprous oxide; hydrophobicity improved; film tunable

Journal Title: ACS Omega
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.