LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of Fluorescent 1,7-Dipyridyl-bis-pyrazolo[3,4-b:4′,3′-e]pyridines: Design of Reversible Chemosensors for Nanomolar Detection of Cu2+

Photo by bernardhermant from unsplash

An efficient access toward novel tridentate ligands based on 1,7-dipyridinyl-substituted bis-pyrazolo[3,4-b:4′,3′-e]pyridines (BPs) and their usefulness as fluorescent probes for cation detection is reported. The synthesis proceeds by a three-step sequence… Click to show full abstract

An efficient access toward novel tridentate ligands based on 1,7-dipyridinyl-substituted bis-pyrazolo[3,4-b:4′,3′-e]pyridines (BPs) and their usefulness as fluorescent probes for cation detection is reported. The synthesis proceeds by a three-step sequence starting from 2-chloropyridine (1), all reactions were performed using microwave radiation under solvent-free conditions, and an overall yield of up to 63% was obtained. Photophysical properties of three representative 1,7-dipyridinyl-BPs (PBPs, 6a–6c) substituted at position 4 with different donor (D) or acceptor (A) groups were investigated. Compounds exhibited large Stokes shift in different solvents and strong blue light emission in both solution and solid state, and quantum yields were as high as 88% for some of them; thus, a twisted intramolecular charge transfer (TICT) fluorescence mechanism characteristic of the 1,4,7-triaryl-BPs was confirmed. The 4-phenyl-substituted probe (Ph-PBP, 6b) was used successfully in the detection of some metals (Cu2+, Co2+, Ni2+, and Hg2+) by fluorescence quenching phenomena, which could be reversed in the presence of ethylenediamine. This probe showed a greater sensitivity toward Cu2+ in concentrations as low as 26 nM, and in the process of “on–off–on” for this fluorescent molecular switch, only 1 equiv of the analyte was used.

Keywords: fluorescent; pyrazolo pyridines; bis pyrazolo; detection

Journal Title: ACS Omega
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.