LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Triptycene-Derived Photoresponsive Fluorescent Azo-Polymer as Chemosensor for Picric Acid Detection

Photo by bermixstudio from unsplash

Two new triptycene-based azobenzene-functionalized polymers (TBAFPs) have been synthesized using the well-known Pd-catalyzed Sonogashira cross-coupling polycondensation reaction between 2,6-diethynyltriptycene and (meta or para) dibromo-azobenzenes. Enhancement of the fluorescent emission intensity… Click to show full abstract

Two new triptycene-based azobenzene-functionalized polymers (TBAFPs) have been synthesized using the well-known Pd-catalyzed Sonogashira cross-coupling polycondensation reaction between 2,6-diethynyltriptycene and (meta or para) dibromo-azobenzenes. Enhancement of the fluorescent emission intensity was observed upon trans → cis isomerization of −N=N― linkage in TBAFPs. The cis-lifetime of TBAFP1 is rather long (greater than 2 days). The resulting materials were tested as a potential chemosensor for the detection of picric acid (PA)—a water pollutant as well as chemical constituent of explosives used in warfare. PA was found to interact strongly with TBAFPs, which led to significant quenching of the latter’s fluorescence emission intensities. The binding constants are in the order of 105 M–1. TBAFPs were also able to detect PA in nanomolar concentrations.

Keywords: detection; chemosensor; derived photoresponsive; photoresponsive fluorescent; picric acid; triptycene derived

Journal Title: ACS Omega
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.