Size-selected submicron spheres become very useful building blocks if the spheres could be synthesized and integrated at any desired position. In particular, spheres having a similar size to visible-light wavelength… Click to show full abstract
Size-selected submicron spheres become very useful building blocks if the spheres could be synthesized and integrated at any desired position. In particular, spheres having a similar size to visible-light wavelength have attracted much attention. Here, we show the synthesis and assembly of size-selected submicron gold spheres using pulsed laser ablation of a gold plate in a supercritical fluid. Four findings were obtained in the study. Submicron spheres with a narrow size distribution were generated, and the polydispersity was ≈ 6%. The average diameter was controlled from 600 to 1000 nm. A thermodynamic condition for scalable synthesis was found. The assembly of spheres onto a metal, carbon, or plastic substrate was accomplished.
               
Click one of the above tabs to view related content.