LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Extraction of Polysaccharide from Dendrobium nobile Lindl. by Subcritical Water Extraction

Photo from wikipedia

Subcritical water extraction (SWE) uses hot compressed water as an effective solvent for both polar and nonpolar compounds and has been developed as an environmentally benign extraction technology for natural… Click to show full abstract

Subcritical water extraction (SWE) uses hot compressed water as an effective solvent for both polar and nonpolar compounds and has been developed as an environmentally benign extraction technology for natural materials. Polysaccharides as one of the main ingredients in Dendrobium plants showed obvious biological activity. Thus, SWE of polysaccharides obtained from Dendrobium nobile Lindl. was investigated in this work. The response surface methodology (RSM) was combined with a Box–Behnken design to evaluate the influence that the three independent variables had on the response. The optimal extraction conditions (determined via RSM) were 129.83 °C extraction temperature, 16.71 min extraction time, and 1.12 MPa extraction pressure. The maximum predicted polysaccharide yield was 20.67%, which corresponded well with the experiential extraction (21.88%). The polysaccharides obtained from either the stirring extraction, refluxing extraction, ultrasound extraction, or SWE methods were compared, and the extraction processes were modeled. The molecular weight, monosaccharide composition, and antioxidative activities of the polysaccharides were analyzed.

Keywords: extraction; water; water extraction; dendrobium nobile; subcritical water

Journal Title: ACS Omega
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.