LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genome-Wide Association Study for Squalene Contents and Functional Haplotype Analysis in Rice

Photo by aaronburden from unsplash

Squalene is an isoprenoid compound that acts as the intermediate metabolite in cholesterol synthesis. Squalene is not very susceptible to peroxidation, and it quenches singlet oxygen in the skin, which… Click to show full abstract

Squalene is an isoprenoid compound that acts as the intermediate metabolite in cholesterol synthesis. Squalene is not very susceptible to peroxidation, and it quenches singlet oxygen in the skin, which is caused by UV exposure and other ionizing radiation sources. Squalene is a precursor to phytosterol synthesis, and it has been widely studied for its ability to reduce oxidation, cancer activity, and cholesterol levels. We performed a genome-wide association study for squalene in rice using 1.6 million high-quality SNPs extracted from 295 accessions’ resequencing data. The candidate gene locus Os09g0319800—an orthologue of terpene synthase in Arabidopsis—showed up as the most likely candidate gene amongst the identified loci. Nucleotide variations in the promoter were associated with squalene content variations within the japonica group. The results of this study can provide clues for understanding the mechanisms of squalene biosynthesis in rice.

Keywords: genome wide; rice; study squalene; squalene; association study; wide association

Journal Title: ACS Omega
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.