LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theoretical Analysis of Fe K-Edge XANES on Iron Pentacarbonyl

Photo from academic.microsoft.com

Iron pentacarbonyl (Fe(CO)5) is a versatile material that is utilized as an inhibitor of flame, shows soot suppressibility, and is used as a precursor for focused electron-beam-induced deposition (FEBID). X-ray… Click to show full abstract

Iron pentacarbonyl (Fe(CO)5) is a versatile material that is utilized as an inhibitor of flame, shows soot suppressibility, and is used as a precursor for focused electron-beam-induced deposition (FEBID). X-ray absorption near-edge structure (XANES) of the K edge, which is a powerful technique for monitoring the oxidation states and coordination environment of metal sites, can be used to gain insight into Fe(CO)5-related reaction mechanisms in in situ experiments. We use a finite difference method (FDM) and molecular-orbital-based time-dependent density functional theory (TDDFT) calculations to clarify the Fe K-edge XANES features of Fe(CO)5. The two pre-edge peaks P1 and P2 are mainly the Fe(1s) → Fe–C(σ*) and Fe(1s) → Fe–C(π*) transitions, respectively. When the geometry transformed from D3h to C4v symmetry, a ∼30% decrease of the pre-edge P2 intensity was observed in the simulated spectra. This implies that the π bonding of Fe and CO is sensitive to changes in geometry. The following rising edge and white line regions are assigned to the Fe(1s) → Fe(4p)(mixing C(2p)) transitions. Our results may provide useful information to interpret XANES spectra variations of in situ reactions of metal–CO or similar compounds with π acceptor ligandlike metal–CN complexes.

Keywords: analysis edge; edge; geometry; iron pentacarbonyl; edge xanes; theoretical analysis

Journal Title: ACS Omega
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.