LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zn-Modified Hβ Zeolites Used in the Adsorptive Removal of Organic Chloride from Model Naphtha

Photo from wikipedia

Different metal ions were used to modify Hβ zeolite adsorbents by an impregnation method to remove organic chlorides from the model naphtha. The dechlorination performance of different ion-modified adsorbents was… Click to show full abstract

Different metal ions were used to modify Hβ zeolite adsorbents by an impregnation method to remove organic chlorides from the model naphtha. The dechlorination performance of different ion-modified adsorbents was evaluated using a microcoulometer. The effects of calcination time and temperature, metal loading, adsorption time and temperature, and dosage of adsorbent were investigated by batch adsorption experiments. The modified adsorbents were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), NH3-temperature-programmed desorption (TPD), scanning electron microscopy (SEM), infrared spectroscopy of pyridine adsorption (Py-IR), and X-ray photoelectron spectroscopy (XPS). After modification, the modified Zn/Hβ zeolite exhibited the best dechlorination performance among the other metal-loaded zeolites. The removal percentage of organic chloride of the Zn/Hβ adsorbent prepared at optimum preparation and adsorption conditions can reach 72.54%, compared with 34.07% of Hβ zeolite. The Zn/Hβ adsorbent also maintained good dechlorination performance after regeneration by calcination for five times. The characterization results revealed that the concentration of the B acid sites in the zeolite decreased with the introduction of the metals, whereas that of the L acid sites increased. Zn/Hβ zeolite had the lowest B/L ratio but the best dechlorination performance, which meant that the type and amount of acidic sites present in zeolites played a significant role in dechlorination performance and L acid was beneficial for chloride compound removal.

Keywords: model naphtha; dechlorination; spectroscopy; chloride; dechlorination performance

Journal Title: ACS Omega
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.