LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strongly Coupled Plasmon Polaritons in Gold and Epsilon-Near-Zero Bifilms

Photo from wikipedia

Epsilon-near-zero (ENZ) polaritons in a thin transparent conducting-oxide film exhibit a significant electric field enhancement and localization within the film at frequencies close to their plasma frequency, but do not… Click to show full abstract

Epsilon-near-zero (ENZ) polaritons in a thin transparent conducting-oxide film exhibit a significant electric field enhancement and localization within the film at frequencies close to their plasma frequency, but do not propagate. Meanwhile, plasmon polariton modes in thin metallic films can propagate for several microns, but are more loosely confined in the metal. Here, we propose a strongly coupled bilayered structure of a thin gold film on a thin indium tin oxide (ITO) film that supports hybrid polariton modes. We experimentally characterize the dispersion of these modes and show that they have propagation lengths of 4–8 μm while retaining mode confinement greater than that of the polariton in gold films by nearly an order of magnitude. We study the tunability of this coupling strength by varying the thickness of the ITO film and show that ultrastrong coupling is possible at certain thicknesses. The unusual linear and nonlinear optical properties of ITO at ENZ frequencies make these bifilms useful for the active tuning of strong coupling, ultrafast switching, and enhanced nonlinear interactions at near-infrared frequencies.

Keywords: epsilon near; near zero; strongly coupled; film; gold

Journal Title: ACS Photonics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.