We propose highly efficient hybrid plasmonic bullseye antennas for collecting photon emission from nm-sized quantum emitters. In our approach, the emitter radiation is coupled to surface plasmon polaritons that are… Click to show full abstract
We propose highly efficient hybrid plasmonic bullseye antennas for collecting photon emission from nm-sized quantum emitters. In our approach, the emitter radiation is coupled to surface plasmon polaritons that are consequently converted into highly directional out-of-plane emission. The proposed configuration consists of a high-index titania bullseye grating separated from a planar silver film by a thin low-index silica spacer layer. Such hybrid systems are theoretically capable of directing 85% of the dipole emission into a 0.9 NA objective, while featuring a spectrally narrow-band tunable decay rate enhancement of close to 20 at the design wavelength. Hybrid antenna structures were fabricated by standard electron-beam lithography without the use of lossy adhesion layers that might be detrimental to antenna performance. The fabricated antennas remained undamaged at saturation laser powers exhibiting stable operation. For experimental characterization of the antenna properties, a fluorescent nanodiamond ...
               
Click one of the above tabs to view related content.