LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High Responsivity β-Ga2O3 Metal–Semiconductor–Metal Solar-Blind Photodetectors with Ultraviolet Transparent Graphene Electrodes

Photo by viazavier from unsplash

We demonstrated high responsivity metal–semiconductor–metal (MSM) solar-blind photodetectors by integrating exfoliated β-Ga2O3 microlayers with graphene, which is a deep ultraviolet (UV) transparent and conductive electrode. Photodetectors with MSM structures commonly… Click to show full abstract

We demonstrated high responsivity metal–semiconductor–metal (MSM) solar-blind photodetectors by integrating exfoliated β-Ga2O3 microlayers with graphene, which is a deep ultraviolet (UV) transparent and conductive electrode. Photodetectors with MSM structures commonly suffer from low responsivity, although they feature a facile fabrication process, low dark current, and fast response speed. The β-Ga2O3 MSM solar-blind photodetectors with graphene electrodes exhibited excellent operating characteristics including higher responsivity (∼29.8 A/W), photo-to-dark current ratio (∼1 × 106%), rejection ratio (R254nm/R365nm, ∼9.4 × 103), detectivity (∼1 × 1012 Jones), and operating speed to UV-C wavelengths, compared with MSM photodetectors with conventional metal electrodes. Absence of shading by the integration of graphene with β-Ga2O3 allows maximum exposure to the incident photons, suggesting a great potential for deep UV optoelectronic applications.

Keywords: high responsivity; metal; responsivity; blind photodetectors; solar blind

Journal Title: ACS Photonics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.