LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ab Initio Plasmonics of Externally Doped Silicon Nanocrystals

Photo by viazavier from unsplash

Heavily doped semiconductor nanocrystals (NCs) represent a novel class of plasmonic materials: their hypertunable plasmonic resonances play a key role in different nanotechnology applications. The plasmonic properties of doped semiconductor… Click to show full abstract

Heavily doped semiconductor nanocrystals (NCs) represent a novel class of plasmonic materials: their hypertunable plasmonic resonances play a key role in different nanotechnology applications. The plasmonic properties of doped semiconductor NCs have been, to date, mainly modeled using (semi)classical theoretical approaches in contrast to conventional metallic NCs for which ab initio plasmonics based on Time-Dependent Density Functional Theory (TD-DFT) calculations have now become the standard reference. In this work, we aim at filling this gap by presenting a TD-DFT study on the optical properties of silicon NCs doped with an increasing number of excess electrons (dynamical doping). We have considered spherical NCs of different sizes (up to a diameter of 2.4 nm) embedded into an external polarizable medium, which turned out to be very important to obtain stable ground-state configurations. TD-DFT results show the presence of a plasmon peak at low energy with an intensity increasing with the number of exce...

Keywords: initio plasmonics; plasmonics externally; doped silicon; externally doped; nanotechnology; silicon nanocrystals

Journal Title: ACS Photonics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.