LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electro-optical Amplitude and Phase Modulators Based on Tunable Guided-Mode Resonance Effect

Photo by wherda from unsplash

Here, electrically tunable amplitude and phase modulators are designed by the hybridization of indium tin oxide (ITO) into a guided-mode resonance mirror (so-called GMRM) which consists of a high-index silicon… Click to show full abstract

Here, electrically tunable amplitude and phase modulators are designed by the hybridization of indium tin oxide (ITO) into a guided-mode resonance mirror (so-called GMRM) which consists of a high-index silicon (Si) nanograting placed on top of a Si guiding core followed by a silicon-dioxide optical buffer layer and a highly reflective substrate. The physical mechanism is based on the intriguing optical characteristics of GMRMs and integration of a dual-gated ITO with the capability of charge carrier modulation into the Si nanograting. A gate-tunable amplitude modulator with a modulation depth as high as ≈0.80 is realized by careful selection of structural parameters, excitation of a strongly coupled guided-mode resonance, and modifying the external bias voltage. This design can also be adjusted only by changing the thickness of its optical buffer layer and moderating the strength of the guided-mode resonance to serve as an efficient active phase modulator. The phase variation of ≈210° and relatively high ...

Keywords: mode resonance; phase modulators; amplitude phase; guided mode

Journal Title: ACS Photonics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.