LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metasurface-Integrated Photonic Platform for Versatile Free-Space Beam Projection with Polarization Control.

Photo from wikipedia

Densely integrated photonic circuits enable scalable, complex processing of optical signals, including modulation, multiplexing, wavelength conversion, and detection. Directly interfacing such integrated circuits to free-space optical modes will enable novel… Click to show full abstract

Densely integrated photonic circuits enable scalable, complex processing of optical signals, including modulation, multiplexing, wavelength conversion, and detection. Directly interfacing such integrated circuits to free-space optical modes will enable novel optical functions, such as chip-scale sensing, interchip free-space interconnect and cooling, trapping, and interrogation of atoms. However, doing this within the limits of planar batch fabrication requires new approaches for bridging the large mode scale mismatch. Here, by integrating a dielectric metasurface with an extreme photonic mode converter, we create a versatile nanophotonic platform for efficient coupling to arbitrary-defined free-space radiation of 780 nm wavelength with well-controlled spatially-dependent polarization, phase, and intensity. Without leaving the chip, the high index photonic mode is converted first to a ≈ 200 μm wide, precisely collimated, linearly-polarized Gaussian beam, which is then modified by a planar, integrated, low-loss metasurface. We demonstrate high numerical aperture, diffraction limited focusing to an ≈ 473 nm spot at an ≈ 75 μm working distance, and combine it with simultaneous conversion from linear to elliptical polarization. All device components are lithographically defined and can be batch fabricated, facilitating future chip-scale low-cost hybrid photonic systems for bio-sensing, nonlinear signal processing and atomic quantum sensing, frequency references and memory.

Keywords: space; polarization; integrated photonic; platform; metasurface; free space

Journal Title: ACS photonics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.