LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cascade Reaction-Based Chemiresistive Array for Ethylene Sensing.

Photo from wikipedia

Chemiresistive sensors, which are based on semiconducting materials, offer real-time monitoring of environment. However, detection of nonpolar chemical substances is often challenging because of the weakness of the doping effect.… Click to show full abstract

Chemiresistive sensors, which are based on semiconducting materials, offer real-time monitoring of environment. However, detection of nonpolar chemical substances is often challenging because of the weakness of the doping effect. Herein, we report a concept of combining a cascade reaction (CR) and a chemiresistive sensor array for sensitive and selective detection of a target analyte (herein, ethylene in air). Ethylene was converted to acetaldehyde through a Pd-catalyzed heterogeneous Wacker reaction at 40 °C, followed by condensation with hydroxylamine hydrochloride to emit HCl vapor. HCl works as a strong dopant for single-walled carbon nanotubes (SWCNTs), enabling the main sensor to detect ethylene with excellent sensitivity (10.9% ppm-1) and limit of detection (0.2 ppm) in 5 min. False responses that occur in the main sensor are easily discriminated by reference sensors that partially employ CR. Moreover, though the sensor monitors the variation of normalized electric resistance (ΔR/R0) in the SWCNT network, temporary deactivation of CR yields a sensor system that does not require analyte-free air for a baseline correction (i.e., estimation of R0) and recovery of response. The concept presented here is generally applicable and offers a solution for several issues that are inherently present in chemiresistive sensing systems.

Keywords: sensor; array; cascade reaction; reaction; based chemiresistive; reaction based

Journal Title: ACS sensors
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.