The massive use of pesticides nowadays has led to serious consequences for the environment and public health. Fluorescence analytical methods for pesticides are particularly advantageous with respect to simplicity and… Click to show full abstract
The massive use of pesticides nowadays has led to serious consequences for the environment and public health. Fluorescence analytical methods for pesticides are particularly advantageous with respect to simplicity and portability; however, currently available fluorescence methods (enzyme-based assays and indicator displacement assays) with poor universality are only able to detect few specific pesticides (e.g., organophosphorus). Making use of the multiple flexible and asymmetrical binding sites in albumin, we herein report a set of multicolor albumin-based host-guest ensembles. These ensembles exhibit a universal but distinctive fluorescent response to most of the common pesticides and allow array-based identification of pesticides with high accuracy. Furthermore, the simplicity, portability, and visualization of this method enable on-site determination of pesticides in a practical setting. This albumin host strategy largely expands the toolbox of traditional indicator displacement assays (synthetic macrocycles as hosts), and we expect it to inspire a series of sensor designs for pesticide detection.
               
Click one of the above tabs to view related content.