Continuous real-time measurement of specific targets in complex biological samples is of great significance for early diagnosis and treatment of diseases and thus enables achievement of personalized medicine. Electrochemical aptamer-based… Click to show full abstract
Continuous real-time measurement of specific targets in complex biological samples is of great significance for early diagnosis and treatment of diseases and thus enables achievement of personalized medicine. Electrochemical aptamer-based (E-AB) sensors are good candidates to fill this role due to their high specificity, sensitivity, rapid detection, and simple preparation. However, this sensor class suffers from severe baseline drift in the complex matrix probably due to the nonspecific adsorption of components. Here, we introduce a series of self-assembled monolayers with a variety of hydrophobic functional groups into an E-AB sensor platform, achieving enhancement of the antifouling performance and thus the detection performance (e.g., stability, sensitivity, and specificity). We reveal that the antifouling performance enhanced by such hydrophobic SAMs is probably due to its instant adsorption of components onto the surface, rather than the repelling of these components by hydrophilic SAMs in previous reports.
               
Click one of the above tabs to view related content.