LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hyperpolarized (1-13C)Alaninamide Is a Multifunctional In Vivo Sensor of Aminopeptidase N Activity, pH, and CO2.

Photo by memoriesareus_ from unsplash

Spin hyperpolarization enables real-time metabolic imaging of carbon-13-labeled substrates. While hyperpolarized l-(1-13C)alaninamide is a probe of the cell-surface tumor marker aminopeptidase-N (APN, CD13), its activity in vivo has not been… Click to show full abstract

Spin hyperpolarization enables real-time metabolic imaging of carbon-13-labeled substrates. While hyperpolarized l-(1-13C)alaninamide is a probe of the cell-surface tumor marker aminopeptidase-N (APN, CD13), its activity in vivo has not been described. Scanning the kidneys of rats infused with hyperpolarized alaninamide shows both conversion to [1-13C]alanine and several additional spectral peaks with distinct temporal dynamics. The (1-13C)alaninamide chemical shift is pH-sensitive, with a pKa of 7.9 at 37 °C, and the peaks correspond to at least three different compartments of pH 7.46 ± 0.02 (1), 7.21 ± 0.02 (2), and 6.58 ± 0.05 (3). An additional peak was assigned to the carboxyamino adduct formed by reaction with dissolved CO2. Spectroscopic imaging showed nonuniform distribution, with the low-pH signal more concentrated in the inner medulla. Treatment with the diuretic acetazolamide resulted in significant pH shifts in compartment 1 to 7.38 ± 0.03 (p = 0.0057) and compartment 3 to 6.80 ± 0.05 (p = 0.0019). While the pH of compartment 1 correlates with blood pH, the pH of compartment 3 did not correspond to the pH of urine. In vitro experiments show that alaninamide readily enters blood cells and can detect intracellular pH. While carbamate formation depends on pH and pCO2, the carbamate-to-alaninamide ratio did not correlate with either arterial blood pH or pCO2, suggesting that it may reflect variations in tissue pH and pCO2. This study demonstrates the feasibility of using hyperpolarized sensors to simultaneously image enzyme activity, pCO2, and pH in vivo.

Keywords: vivo; hyperpolarized 13c; 13c alaninamide; activity; alaninamide multifunctional; aminopeptidase

Journal Title: ACS sensors
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.