LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Eddy Current Measurement of Chemiresistive Sensing Transients in Graphene-hBN Heterostructures.

Photo by danedeaner from unsplash

The development of graphene-based electronic and gas sensing devices has motivated considerable research interest in the properties of graphene-hBN heterostructures. Eddy current measurements of the sheet conductance of graphene-hBN heterostructures… Click to show full abstract

The development of graphene-based electronic and gas sensing devices has motivated considerable research interest in the properties of graphene-hBN heterostructures. Eddy current measurements of the sheet conductance of graphene-hBN heterostructures show a relatively low conductance, as compared to results previously reported in the literature, all of which were obtained using contact-based measurement methods. Chemiresistive measurements of the graphene-hBN heterostructure response to oxygen adsorption, including hysteric effects under transient multicycle loading, show that the incremental sheet conductance responses of graphene and graphene-hBN sensors differ in sign. A transient, nonlinear, history dependent constitutive model of graphene-hBN response to oxygen adsorption distinguishes stochastic variations in material properties from deterministic variations in sensor performance. The deterministic variations are due to sensing process hysteresis, a phenomenon of central interest in the development of graphene-based sensor systems.

Keywords: graphene hbn; heterostructures eddy; eddy current; hbn heterostructures; current measurement

Journal Title: ACS sensors
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.