The profiling of the effector functions of single immune cells─including cytokine secretion─can lead to a deeper understanding of how the immune system operates and to potential diagnostics and therapeutical applications.… Click to show full abstract
The profiling of the effector functions of single immune cells─including cytokine secretion─can lead to a deeper understanding of how the immune system operates and to potential diagnostics and therapeutical applications. Here, we report a microfluidic device that pairs single cells and antibody-functionalized microbeads in hydrodynamic traps to quantitate cytokine secretion. The device contains 1008 microchambers, each with a volume of ∼500 pL, divided into six different sections individually addressed to deliver an equal number of chemical stimuli. Integrating microvalves allowed us to isolate cell/bead pairs, preventing cross-contamination with factors secreted by adjacent cells. We implemented a fluorescence sandwich immunoassay on the biosensing microbeads with a limit of detection of 9 pg/mL and were able to detect interleukin-8 (IL-8) secreted by single blood-derived human monocytes in response to different concentrations of LPS. Finally, our platform allowed us to observe a significant decrease in the number of IL-8-secreting monocytes when paracrine signaling becomes disrupted. Overall, our platform could have a variety of applications for which the analysis of cellular function heterogeneity is necessary, such as cancer research, antibody discovery, or rare cell screening.
               
Click one of the above tabs to view related content.