Formaldehyde (HCHO) is a prevalent indoor gas pollutant that has been seriously endangering human health. Developing semiconductor metal oxide (SMO) gas sensors for selective measurement of formaldehyde at low working… Click to show full abstract
Formaldehyde (HCHO) is a prevalent indoor gas pollutant that has been seriously endangering human health. Developing semiconductor metal oxide (SMO) gas sensors for selective measurement of formaldehyde at low working temperatures remains a great challenge. In this work, silver/tin-polyphenol hybrid spheres are applied as a sacrificial template for the fabrication of spherical mesoporous Ag2O/SnO2 sensing materials. The obtained mesoporous Ag2O/SnO2 spheres have a uniform particle size (∼80 nm), large pore size (5.8 nm), and high specific surface area (71.3 m2 g-1). The response is 140 toward formaldehyde (10 ppm) at a low working temperature (75 °C). The detection limit reaches a low level of 23.6 ppb. Most importantly, it has excellent selectivity toward interfering gases. When the concentration of the interfering gas (e.g., ethanol) is 5 times as high as that of formaldehyde, the response is little affected. Theoretical calculations suggest that the addition of Ag2O can significantly enhance the adsorption energy toward formaldehyde, thus improving formaldehyde sensing performance. This work demonstrates an efficient self-template synthesis strategy for noble metal catalyst-decorated mesoporous metal oxide spheres, which could boost gas sensing performance at a lower working temperature.
               
Click one of the above tabs to view related content.