LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust Rules for Optimal Colorimetric Sensing Based on Gold Nanoparticle Aggregation

Photo by 2mduffel from unsplash

Spurred by outstanding optical properties, chemical stability, and facile bioconjugation, plasmonic metals have become the first-choice materials for optical signal transducers in biosensing. While the design rules for surface-based plasmonic… Click to show full abstract

Spurred by outstanding optical properties, chemical stability, and facile bioconjugation, plasmonic metals have become the first-choice materials for optical signal transducers in biosensing. While the design rules for surface-based plasmonic sensors are well-established and commercialized, there is limited knowledge of the design of sensors based on nanoparticle aggregation. The reason is the lack of control over the interparticle distances, number of nanoparticles per cluster, or multiple mutual orientations during aggregation events, blurring the threshold between positive and negative readout. Here we identify the geometrical parameters (size, shape, and interparticle distance) that allow for maximizing the color difference upon nanoparticle clustering. Finding the optimal structural parameters will provide a fast and reliable means of readout, including unaided eye inspection or computer vision.

Keywords: aggregation; robust rules; rules optimal; optimal colorimetric; nanoparticle aggregation

Journal Title: ACS Sensors
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.