LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hand-Held Femtogram Detection of Hazardous Picric Acid with Hydrophobic Ag Nanopillar SERS Substrates and Mechanism of Elasto-Capillarity.

Photo by i_am_nah from unsplash

Picric acid (PA) is a severe environmental and security risk due to its unstable, toxic, and explosive properties. It is also challenging to detect in trace amounts and in situ… Click to show full abstract

Picric acid (PA) is a severe environmental and security risk due to its unstable, toxic, and explosive properties. It is also challenging to detect in trace amounts and in situ because of its highly acidic and anionic character. Here, we assess sensing of PA under nonlaboratory conditions using surface-enhanced Raman scattering (SERS) silver nanopillar substrates and hand-held Raman spectroscopy equipment. The advancing elasto-capillarity effects are explained by molecular dynamics simulations. We obtain a SERS PA detection limit on the order of 20 ppt, corresponding attomole amounts, which together with the simple analysis methodology demonstrates that the presented approach is highly competitive for ultrasensitive analysis in the field.

Keywords: elasto capillarity; picric acid; hand held

Journal Title: ACS sensors
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.