LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D Capillary-Driven Paper-Based Sequential Microfluidic Device for Electrochemical Sensing Applications.

Photo by brandi1 from unsplash

This article describes the device design and fabrication of two different configurations (flow-through and stopped-flow) of a sequential fluid delivery platform on a microfluidic paper-based device. The developed device is… Click to show full abstract

This article describes the device design and fabrication of two different configurations (flow-through and stopped-flow) of a sequential fluid delivery platform on a microfluidic paper-based device. The developed device is capable of storing and transporting reagents sequentially to the detection channel without the need for external power. The device comprises two components: an origami folding paper (oPAD) and a movable reagent-stored pad (rPAD). This 3D capillary-driven device eliminates the undesirable procedure of multiple-step reagent manipulation in a complex assay. To demonstrate the scope of this approach, the device is used for electrochemical detection of biological species. Using a flow-through configuration, a self-calibration plot plus real sample analysis using a single buffer introduction are established for ascorbic acid detection. We further broaden the effectiveness of the device to a complex assay using a stopped-flow configuration. Unlike other electrochemical paper-based sensors in which the user is required to cut off the device inlet or rest for the whole channel saturation before measurement, herein a stopped-flow device is carefully designed to exclude the disturbance from the convective mass transport. As a proof of concept, multiple procedures for electrode modification and voltammetric determination of serotonin are illustrated. In addition, the research includes an impedimetric label-free immunosensor for α-fetoprotein using the modified stopped-flow device. The beneficial advantages of simplicity, low sample volume (1 μL), and ability to perform a complex assay qualify this innovative device for use with diverse applications.

Keywords: complex assay; paper based; capillary driven; stopped flow; paper; device

Journal Title: ACS sensors
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.