LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ethanol Conversion into 1,3-Butadiene by the Lebedev Method over MTaSiBEA Zeolites (M = Ag, Cu, Zn)

Photo from wikipedia

Tantalum-containing SiBEA zeolite with isolated framework mononuclear Ta(V) doped with Ag, Cu, and Zn was prepared and characterized by XRD, XPS, DR UV–vis, and FTIR (with pyridine, 2,6-di-tert-butylpyridine, pyrrole, and… Click to show full abstract

Tantalum-containing SiBEA zeolite with isolated framework mononuclear Ta(V) doped with Ag, Cu, and Zn was prepared and characterized by XRD, XPS, DR UV–vis, and FTIR (with pyridine, 2,6-di-tert-butylpyridine, pyrrole, and deuterated chloroform). The conversion of ethanol as a renewable raw material into 1,3-butadiene by the Lebedev method over these zeolite catalysts was investigated. The doping of TaSiBEA with Ag, Cu, and Zn changes its catalytic properties in ethanol conversion into 1,3-butadiene as a result of modification of the acid–base properties with formation of additional dehydrogenation sites. Such modification allows accelerating ethanol dehydrogenation to acetaldehyde and subsequent steps of the ethanol-to-butadiene process. Ethanol conversion and butadiene selectivity over the catalysts are increased in the order: TaSiBEA < ZnTaSiBEA < AgTaSiBEA < CuTaSiBEA. Higher selectivity to butadiene (73%) was achieved over CuTaSiBEA (at 88% ethanol conversion, T = 598 K, WHSV = 0.5 h–1).

Keywords: conversion butadiene; butadiene lebedev; butadiene; conversion; lebedev method; ethanol conversion

Journal Title: ACS Sustainable Chemistry & Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.