LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Efficient Noble-Metal-Free Photocatalyst for Visible-Light-Driven H2 Evolution: Cu/Ni-Codoped Cd0.5Zn0.5S Nanoplates

Photo by refargotohp from unsplash

In the present work, Cu/Ni-codoped Cd05Zn0.5S nanoplates were synthesized through a one-step hydrothermal process. Meanwhile, photocatalytic H2 evolution from water over the as-prepared Cu/Ni-codoped Cd0.5Zn0.5S nanoplates was investigated under visible… Click to show full abstract

In the present work, Cu/Ni-codoped Cd05Zn0.5S nanoplates were synthesized through a one-step hydrothermal process. Meanwhile, photocatalytic H2 evolution from water over the as-prepared Cu/Ni-codoped Cd0.5Zn0.5S nanoplates was investigated under visible irradiation using Na2S and Na2SO3 as sacrificial reagents. The results indicate that the as-prepared Cu/Ni-codoped Cd0.5Zn0.5S nanoplates are an efficient photocatalyst for visible-light-driven H2 evolution from water, and there exists obvious synergy effect between Cu and Ni dopants. The photocatalytic activity of the Cd0.5Zn0.5S nanoplates can be significantly enhanced due to the introduction of Cu and Ni. Under optimal conditions, the H2 evolution rate over the Cu/Ni-codoped Cd0.5Zn0.5S nanoplates is up to 58.33 mmol h–1 g–1, which is 3.5 times higher than that over the pure Cd0.5Zn0.5S nanoplates. Finally, the photocatalytic mechanism was preliminarily discussed.

Keywords: evolution; photocatalyst visible; codoped cd0; 5zn0 nanoplates; visible light; cd0 5zn0

Journal Title: ACS Sustainable Chemistry & Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.