A new process for the production of 1,5-pentanediol (1,5-PDO) from biomass-derived furfural is studied. In this process, furfural is converted to 1,5-PDO in a high overall yield (80%) over inexpensive… Click to show full abstract
A new process for the production of 1,5-pentanediol (1,5-PDO) from biomass-derived furfural is studied. In this process, furfural is converted to 1,5-PDO in a high overall yield (80%) over inexpensive catalysts via multiple steps involving hydrogenation, dehydration, hydration, and hydrogenation subsequently. To effectively recycle H2 as well as recover 1,5-PDO, detailed separation subsystems have been designed and integrated with reaction subsystems. Furthermore, a pioneer plant analysis is performed to estimate the risk on the cost growth and plant performance shortfalls. The integrated process leads to a minimum selling price of $1973 ton–1 for 1,5-PDO, which suggests that it could be a promising approach for converting biomass into oxygenated commodity chemicals, which are difficult to produce from petroleum-derived feedstocks. The sensitivity analysis also identifies that the most important economic parameters for the process include the furfural feedstock price and plant size.
               
Click one of the above tabs to view related content.