LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Scavenging Biomechanical Energy Using High-Performance, Flexible BaTiO3 Nanocube/PDMS Composite Films

Photo by introspectivedsgn from unsplash

Highly flexible, biocompatible, large-scale production of BaTiO3 nanocube (BTO NC)/poly(dimethylsiloxane) (PDMS) composite films (CFs) prepared via a simple, cost-effective solution casting technique are reported for the first time for high-performance… Click to show full abstract

Highly flexible, biocompatible, large-scale production of BaTiO3 nanocube (BTO NC)/poly(dimethylsiloxane) (PDMS) composite films (CFs) prepared via a simple, cost-effective solution casting technique are reported for the first time for high-performance piezoelectric nanogenerators (PNGs). The crystalline BTO NCs were synthesized via a simple low-temperature molten salt method. The piezoelectric output performance of the CF was investigated as a function of the weight ratio of the BTO NCs in the polymer matrix, electrical poling, constant mechanical loading, and low-frequency biomechanical energy harvesting. The composite PNG (CPNG) with 15 wt % of BTO NCs displayed an excellent peak-to-peak voltage (Vpp) of 126.3 V and current density (J) of 77.6 μA/cm2 and generated a maximum instantaneous areal power density of 7 mW/cm2 at 100 MΩ at the low input mechanical pressure of 988.2 Pa. The generated output was sufficient to drive commercial light-emitting diodes and low-powered consumer electronic devices. Nex...

Keywords: pdms composite; batio3 nanocube; composite films; performance; biomechanical energy; high performance

Journal Title: ACS Sustainable Chemistry & Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.