LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multihierarchical Structure of Hybridized Phosphates Anchored on Reduced Graphene Oxide for High Power Hybrid Energy Storage Devices

Photo from wikipedia

A multihierarchical structure with (NH4)(Ni, Co)PO4·0.67H2O microplatelets and (Ni, Co)3(PO4)2·8H2O ultrathin nanopieces anchored on reduced graphene oxide (NCNP/RGO) is synthesized via a mild hydrothermal approach. This unique interface-rich structure is… Click to show full abstract

A multihierarchical structure with (NH4)(Ni, Co)PO4·0.67H2O microplatelets and (Ni, Co)3(PO4)2·8H2O ultrathin nanopieces anchored on reduced graphene oxide (NCNP/RGO) is synthesized via a mild hydrothermal approach. This unique interface-rich structure is suitable for a high power energy storage device by providing efficient pathways for both electronic conduction and ionic transportation, which are effective ways to improve the electrochemical performance. Specifically, a specific capacity of 993 F g–1 is obtained in the three-electrode measurement, with ultrahigh capacity retention of 81.2% (807 F g–1) from 0.5 to 32 A g–1. The hybrid device constructed with the as-prepared NCNP/RGO as anode and a hierarchical porous carbon (HPC) as cathode offers a very superior energy density of 42.1 Wh kg–1 at a power density of 73 W kg–1, which remains 32 Wh kg–1 at 14 kW kg–1. Meanwhile, the as-prepared hybrid capacitor exhibits a remarkable cycling stability (96.5% capacitance retention after 10 000 cycles). The c...

Keywords: energy; anchored reduced; power; multihierarchical structure; structure; reduced graphene

Journal Title: ACS Sustainable Chemistry & Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.