LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Preparation of the Phase Change Materials Paraffin/Porous Al2O3@Graphite Foams with Enhanced Heat Storage Capacity and Thermal Conductivity

Photo by m_turgoose from unsplash

Porous Al2O3@graphite foams (PAGFs) were directly prepared by a particle-stabilized foaming method, with 40 vol % Al2O3 particles and different proportions of sucrose. The as-prepared PAGFs demonstrate three-dimensional interpenetrating structures… Click to show full abstract

Porous Al2O3@graphite foams (PAGFs) were directly prepared by a particle-stabilized foaming method, with 40 vol % Al2O3 particles and different proportions of sucrose. The as-prepared PAGFs demonstrate three-dimensional interpenetrating structures and high porosities according to SEM images, with the porous morphology being markedly influenced by the concentration percentage of sucrose. Additionally, the PAGFs could be successfully impregnated with paraffin, reaching a maximum enclosed ratio (φ) of 66 wt % without any leakage. Differential scanning calorimetry measurement showed that the latent heat of the composites of paraffin/PAGF (PAGFPs) reach maxima of 105.76 and 105.98 J/g after 200 cycles of melting/freezing. Thermogravimetric analysis, Fourier transform infrared spectroscopy, and thermal cyclic tests demonstrated good thermal and chemical stability and good thermal reliability for the as-prepared form-stable PAGFPs. Our results also confirmed that a layer of ordered graphite film is formed on the...

Keywords: graphite foams; al2o3 graphite; porous al2o3; heat; preparation phase; design preparation

Journal Title: ACS Sustainable Chemistry & Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.