LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lignin-First Approach to Biorefining: Utilizing Fenton’s Reagent and Supercritical Ethanol for the Production of Phenolics and Sugars

Photo from wikipedia

Selective lignin depolymerization (SLD) has emerged as a value-added method of pretreatment for lignocellulosic biorefining, in which lignin is depolymerized into valuable phenolic monomers prior to utilization of the hemicellulose… Click to show full abstract

Selective lignin depolymerization (SLD) has emerged as a value-added method of pretreatment for lignocellulosic biorefining, in which lignin is depolymerized into valuable phenolic monomers prior to utilization of the hemicellulose and cellulose. Herein, we report a biomimetic Fenton catalyzed SLD process, converting sweet sorghum bagasse into an organic oil that is rich in phenolic monomers and a solid carbohydrate that is favorable for enzymatic hydrolysis into sugars. Initially, the feedstock’s molecular structure was modified through iron chelation and free radical oxidation via Fenton’s reagent (Fe3+, H2O2). The lignin component of the modified feedstock was then selectively depolymerized in supercritical ethanol (250 °C, 6.5 MPa) under nitrogen to produce a phenolic oil, with a maximum yield of 75.8 wt %. Six valuable phenolic monomers were detected in this oil, with a maximum cumulative yield of 19.1 wt %. The solid carbohydrate obtained after the SLD process was enzymatically hydrolyzed to liberat...

Keywords: fenton reagent; supercritical ethanol; fenton; phenolic monomers

Journal Title: ACS Sustainable Chemistry & Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.