LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemically Bonded Ni Cocatalyst onto the S Doped g-C3N4 Nanosheets and Their Synergistic Enhancement in H2 Production under Sunlight Irradiation

Photo from wikipedia

Nickel deposited S-doped carbon nitride (Ni–S:g-C3N4/Ni-SCN) nanosheets have been synthesized using calcination followed by a sulfidation process. X-ray photoelectron spectra revealed that the doped S atoms are successfully introduced into… Click to show full abstract

Nickel deposited S-doped carbon nitride (Ni–S:g-C3N4/Ni-SCN) nanosheets have been synthesized using calcination followed by a sulfidation process. X-ray photoelectron spectra revealed that the doped S atoms are successfully introduced into the 301 lattices of the host g-C3N4. XPS spectra indicated that the deposited Ni species are chemically bonded onto the host SCN nanosheets through sulfur bonds. The sunlight-driven photocatalytic hydrogen production efficiency of the synthesized Ni-SCN nanosheets is found to be 3628 μmol g–1 h–1, which is around 1.5 folds higher than that of Pt-SCN that synthesized in the present study. The observed efficiency is attributed to the chemical bonding of Ni through S that largely favored the photocatalytic process in terms of charge-separation as well as self-catalytic reactions. The apparent quantum efficiency of the photocatalyst at 420 nm is estimated to be 17.2%, which is relatively one of the higher values reported in the literature. The photocatalytic recyclability r...

Keywords: chemically bonded; production; bonded cocatalyst; c3n4; scn nanosheets; cocatalyst onto

Journal Title: ACS Sustainable Chemistry & Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.