Nickel deposited S-doped carbon nitride (Ni–S:g-C3N4/Ni-SCN) nanosheets have been synthesized using calcination followed by a sulfidation process. X-ray photoelectron spectra revealed that the doped S atoms are successfully introduced into… Click to show full abstract
Nickel deposited S-doped carbon nitride (Ni–S:g-C3N4/Ni-SCN) nanosheets have been synthesized using calcination followed by a sulfidation process. X-ray photoelectron spectra revealed that the doped S atoms are successfully introduced into the 301 lattices of the host g-C3N4. XPS spectra indicated that the deposited Ni species are chemically bonded onto the host SCN nanosheets through sulfur bonds. The sunlight-driven photocatalytic hydrogen production efficiency of the synthesized Ni-SCN nanosheets is found to be 3628 μmol g–1 h–1, which is around 1.5 folds higher than that of Pt-SCN that synthesized in the present study. The observed efficiency is attributed to the chemical bonding of Ni through S that largely favored the photocatalytic process in terms of charge-separation as well as self-catalytic reactions. The apparent quantum efficiency of the photocatalyst at 420 nm is estimated to be 17.2%, which is relatively one of the higher values reported in the literature. The photocatalytic recyclability r...
               
Click one of the above tabs to view related content.