Stiffness and toughness are two mutually exclusive attributes of polymer materials that contribute to significant improvements in impact strength, usually accompanied by a reduction in tensile strength. In this study,… Click to show full abstract
Stiffness and toughness are two mutually exclusive attributes of polymer materials that contribute to significant improvements in impact strength, usually accompanied by a reduction in tensile strength. In this study, ternary thermoplastic vulcanizates (TPVs) consisting of poly(lactic acid) (PLA), poly(methyl methacrylate)-grafted natural rubber (NR-PMMA), and natural rubber (NR) with balanced stiffness and toughness were successfully prepared via peroxide-induced dynamic vulcanization. With 10 wt% of NR and NR-PMMA, the PLA/NR-PMMA/NR ternary TPV displayed an enhanced yield stress of 41.7 MPa (only 38% loss compared to neat PLA) and a significantly higher impact strength of 91.30 kJ/m2 (nearly 32 times that of neat PLA). The in situ compatibilization between PLA and rubber phases was confirmed by Fourier transform infrared spectroscopy. Interfacial, rheological, and calorimetric measurements confirmed that the NR was encapsulated by NR-PMMA in the PLA phase. It was found that the flexibility of the “soft...
               
Click one of the above tabs to view related content.