A proof-of-concept prototype of a heterogeneous catalytic reactor has been developed for continuous production of hydrogen via formic acid (FA) dehydrogenation. A laboratory-type polymer electrolyte fuel cell (PEFC) fed with… Click to show full abstract
A proof-of-concept prototype of a heterogeneous catalytic reactor has been developed for continuous production of hydrogen via formic acid (FA) dehydrogenation. A laboratory-type polymer electrolyte fuel cell (PEFC) fed with the resulting reformate gas stream (H2 + CO2) was applied to convert chemical energy to electricity. To implement an efficient coupling of the reactor and PEFC, research efforts in interrelated areas were undertaken: (1) solid catalyst development and testing for H2 production; (2) computer modeling of heat and mass transfer to optimize the reactor design; (3) study of compatibility of the reformate gas fuel (H2 + CO2) with a PEFC; and (4) elimination of carbon monoxide impurities via preferential oxidation (PROX). During the catalyst development, immobilization of the ruthenium(II)–meta-trisulfonated triphenylphosphine, Ru-mTPPTS, catalyst on different supports was performed, and this complex, supported on phosphinated polystyrene beads, demonstrated the best results. A validated mat...
               
Click one of the above tabs to view related content.