Bioderived polycarbamates were cross-linked with petrochemically derived and biomass-derived dialdehydes to form nonisocyanate polyurethanes (NIPUs). The bioderived polycarbamates were synthesized from a soybean oil-derived alkyd polyol and epoxidized sucrose soyate… Click to show full abstract
Bioderived polycarbamates were cross-linked with petrochemically derived and biomass-derived dialdehydes to form nonisocyanate polyurethanes (NIPUs). The bioderived polycarbamates were synthesized from a soybean oil-derived alkyd polyol and epoxidized sucrose soyate polyol via transcarbamoylation. The polycarbamates were cross-linked with 1,4-cyclohexanedicarboxaldehyde and 2,5-diformylfuran (DFF) to form coatings under either laboratory ambient conditions or through an elevated temperature cure. The coatings were characterized spectroscopically, thermally, and via standard ASTM-coating characterizations. The coatings cured under ambient conditions had similar properties to those subjected to the elevated temperature cure. Ambient-cured coatings exhibited fast tack-free times, Tg values from 67 to 96 °C, high hardness, and good solvent resistance; however, they were brittle and had poor adhesion on aluminum substrates. Coatings cured at elevated temperatures showed increases in Tg values to 75–150 °C. Coa...
               
Click one of the above tabs to view related content.