LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Efficient Thermo- and Sunlight-Driven Energy Storage for Thermo-Electric Energy Harvesting Using Sustainable Nanocellulose-Derived Carbon Aerogels Embedded Phase Change Materials

Photo from wikipedia

It is a challenge to harvest thermoelectric energy in an environment in which temperature is spatially uniform since the temperature gradient is necessary for the Seebeck effect. A sustainable and… Click to show full abstract

It is a challenge to harvest thermoelectric energy in an environment in which temperature is spatially uniform since the temperature gradient is necessary for the Seebeck effect. A sustainable and highly efficient thermo- and sunlight-driven energy conversion and storage material is fabricated by the combination of organic phase change materials (OPCM) with high performance carbon nanofiber aerogels (CNFAs) and proposed as a heat supply to develop an energy harvesting system. The energy harvesting system consists of two different PCM/CNFA composites (stearic acid/CNFA composites (PCM-SA) and 1-tetradecanol/CNFA composites (PCM-1-TD)) and an N and P type semiconductor. It can collect discarded thermal energy and solar energy and convert them into electric energy in an environment with spatially uniform temperature. The high-performance CNFAs are derived from woods and developed by an environmental and economical way. The shape-stabilized PCM/CNFA composites have high latent heat which is comparable to OPCM...

Keywords: thermo; energy; efficient thermo; thermo sunlight; energy harvesting; highly efficient

Journal Title: ACS Sustainable Chemistry & Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.